A Convengent Solution to Tensor Subspace Learning

نویسندگان

  • Huan Wang
  • Shuicheng Yan
  • Thomas S. Huang
  • Xiaoou Tang
چکیده

Recently, substantial efforts have been devoted to the subspace learning techniques based on tensor representation, such as 2DLDA [Ye et al., 2004], DATER [Yan et al., 2005] and Tensor Subspace Analysis (TSA) [He et al., 2005]. In this context, a vital yet unsolved problem is that the computational convergency of these iterative algorithms is not guaranteed. In this work, we present a novel solution procedure for general tensor-based subspace learning, followed by a detailed convergency proof of the solution projection matrices and the objective function value. Extensive experiments on realworld databases verify the high convergence speed of the proposed procedure, as well as its superiority in classification capability over traditional solution procedures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Robust tensor subspace learning for anomaly detection

Background modeling plays an important role in many applications of computer vision such as anomaly detection and visual tracking. Most existing algorithms for learning appearance model are vector-based methods without maintaining the 2D spatial structure information of objects in an image. To this end, a robust tensor subspace learning algorithm is developed for background modeling which can c...

متن کامل

Human Action Recognition Using Tensor Principal Component Analysis

Human action can be naturally represented as multidimensional arrays known as tensors. In this paper, a simple and efficient algorithm based on tensor subspace learning is proposed for human action recognition. An action is represented as a 3th-order tensor first, then tensor principal component analysis is used to reduce dimensionality and extract the most useful features for action recognitio...

متن کامل

Knowledge and Information Systems REGULAR PAPER

Tensor representation is helpful to reduce the small sample size problem in discriminative subspace selection. As pointed by this paper, this is mainly because the structure information of objects in computer vision research is a reasonable constraint to reduce the number of unknown parameters used to represent a learning model. Therefore, we apply this information to the vector-based learning ...

متن کامل

Tensor Subspace Analysis

Previous work has demonstrated that the image variations of many objects (human faces in particular) under variable lighting can be effectively modeled by low dimensional linear spaces. The typical linear subspace learning algorithms include Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Locality Preserving Projection (LPP). All of these methods consider an n1 × n2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007